SKU: DCS-12V-110Ah-Enerdrive
Enerdrive Aux Bundle Deal – 12V 110Ah + DC2DC

FREE DELIVERY AUSTRALIA WIDE

12V 110AH Lithium Ion Battery

  • DCS Battery delivers a minimum of 2500  Cycles
  • Ideal replacement for Gel or Lead Acid Batteries
  • High performance compared to Traditional Batteries

12V 40A DC to DC Battery charger.

  • Features separate inputs for Engine and Solar Charging
  • Auto converting from Engine Charging to Solar Charging
  • 40A output up to 40°C that Decreases for Smaller Ah Batteries

Availability: In Stock

$1,799.00 AUD

From $132.11 a fortnight withInfo

Share on
lithium ion battery 12v 100ah

12V 110AH Lithium Ion Battery 

DCS Batteries are the ideal drop-in replacement & upgrade from AGM, Gel or other lead-acid batteries for any application. DCS gives you the ability to upgrade your current batteries to lithium-ion technology that can deliver a minimum of 2500 cycles and has tremendous advantages in weight, performance, reliability and service life compared to traditional lead-acid batteries.

12V 40A DC to DC Battery charger

The EN3DC40+ is a programmable DC to DC charger featuring separate inputs for engine and solar charging. The solar input is regulated with an MPPT algorithm with a maximum OCV (Open Circuit Voltage) rating of 45V. The charger output is 40A up to 40°C but can be decreased for smaller Ah batteries. While the engine is running, the charger will use the engine input; otherwise, the solar input will be used for charging. Engine charging is auto sensed from the start battery voltage, but an ignition signal can be used instead. The temperature sensor is included but not required for DCS batteries. The charger will take up to 600W of solar input; however, depending on the efficiency of the solar PV panels, 800-900W can also be wired into the charger.

Specifications:
Nominal Voltage 12.8V
Nominal Capacity (1Hr) 110Ah
Case Dimensions (L x W x H) 328mm x 171mm x 215mm
Weight 13.3 Kgs
Cycling voltage 11.5 ~ 14.6V
Charge voltage 14.0 ~ 14.6V
Float Voltage 13.5 ~ 13.7V
Maximum Charge Current 100A
Recommended Charge Current ≤70A
Maximum Discharge Current ≤200A
BMS (built in) Automatic cell balancing, over discharge/charge
Cell Chemistry DCS 3.2V 5.0 – 7.2Ah Cylindrical (LifePO4)
Cycle Performance 2500 Cycles @ 100% DOD
LCA 1000
Ingress Protection IP54
Case ABS (flame retardant plastic)
Operating temp Range -30 to +110 degrees C
Terminals Top Mount M8 Stainless steel / Copper
Parallel Connections Only YES
Series Connections No
Warranty 4 years | 3 years under bonnet

DCS High Performance 2C Charge & Discharge Curves

DOWNLOAD APP (DCS LFP)

DCS Bluetooth Technology powered by DCS LFP, this APP is only for DCS LFP batteries which is based on BLE 4.0 technology. Every DCS battery pack comes standard with our detailed battery monitoring via Bluetooth.

This App provides comprehensive monitoring for DCS LFP batteries, including:

  • SOC%
  • Time Remaining
  • Battery pack voltage, Power & Current
  • Battery Management MOSFET temperature
  • Individual Cell Status with balancing indicators.
  • Connectivity distance up to 10 meters.
  • Every DCS battery pack comes standard with our detailed battery monitoring via Bluetooth

Learn More About the DCS LFP APP

Click Here to Watch the App Overview Video

FAQ

Lithium Ferrophosphate (LFP) is a flame retardant, stable, safe and proven cell chemistry that has a very good energy density around 325 Wh/L. This cell chemistry can be engineered for various applications by adjusting the ratio of elements to provide high performance characteristics. E.g. the DCS marine battery range runs 2C cells, which means our little 75Ah battery will discharge comfortably at 75Ah x 2C = 150A. The DCS 80Ah Extreme runs 10C cells which means the 80A can comfortably discharge at 80Ah x 10C = 800A but is of course limited to lower currents due the the Battery Management System.

LFP also has very good cycling durability between 2,000 ~ 12,000 cycles can be achieved depending on how well the cells are managed, and the lowest rate of capacity loss (aka greater calendar-life) compared to other lithium cell chemistries.

Battery cells are simply a bunch of resistors with the ability to store energy. A 100Ah battery pack has a different resistance characteristic compared to a 50Ah battery pack, that theoretical difference in resistance is 2:1. So if you connect a 100Ah battery in parallel to a 50Ah battery there is no way for these two batteries to equalise and therefore you can’t charge them correctly. So for example connecting a 60Ah calcium starting battery to a 120Ah AGM via a VSR (Voltage Sensing Relay) you cannot charge both batteries correctly and from that day onwards you are prematurely destroying both battery packs. Same theory applies with lithium’s it’s still a battery pack.

What’s the solution? A DC-DC charger, you now have a permanent point of isolation (meaning that both batteries are never connected to each other in parallel). The DC-DC charger takes the surplus power from battery A (engine) and chargers battery B (aux/house). This device now allows any battery capacity and or chemistry to be used.

Yes you can, but lithium’s have a different voltage curve, so you would still need to use a programmable VSR to dial them in correctly. You would also need to ensure the batteries are programmed to never exceed a 10%SOC variance, any larger and you risk damaging the BMS's. These devices also draw a lot of power when engaged to so it’s best to run the two batteries in permanent parallel and run a load disconnect instead of a VSR.

Lithium battery cells have a super low resistance so are very easy to charge and very efficient. This level of efficiency means you can charge them at very high C rates. For example if you look at the charge rate of a 100Ah AGM battery the recommended charging current will be around 25A, which is a 0.25C charge rate. If you consider the DCS 12V 100Ah Lithium battery it can be charged at up to 70A which is a 0.70C charge rate. This means you no longer need to consider DC-DC chargers as you can connect our batteries directly to high power charging devices such as suitable alternators, or large buck boosters. For example our popular dual 90Ah battery system for boats and 4WD vehicles, can be connected to alternators up to 160A.

Because our batteries are internally voltage regulated and because our BMS has such a high sustainable peak discharge current they will do an amazing job of equalising very quickly.

The BMS will open circuit the battery terminals to protect the cells. This means there is no longer any resistance in the system. The BMS needs a 12V signal with at least 1A of current to release and wakeup from a cell protection state. Most mains chargers with a lithium profile will do a slow recovery charge as will most solar regulators. Some chargers on the market today that are advertised as ‘lithium’ compatible still don’t have the firmware to do a slow recovery charge to release BMS’s. If you have a charger that will not wakeup the BMS, easiest way to wake it up is to connect a unregulated solar panel directly to the battery terminals, ensure all loads are disconnected before you do this. Having said that every system should have a suitable low cut off voltage to shutdown loads/accessories so that the batteries are not fully drained.

Use the following settings:

Charged voltage 14.0V
Tail current 4%
Charged detection time 1min
Peukert 1.05
Charge efficiency 98%
Current threshold 0.1A
C rates: refer to the battery pack capacity

Fully charge to 100% isolate everything from the terminals and leave for max 3 months and then cycle (fully discharge and fully charge) and leave again for 3 months etc…. Minimum 4 cycles per year to not effect the cells capacity.

The reason many factory batteries fall over after 9/12 months is because modern/smart alternators typically drop the alternators voltage output to 13.5/13.6V. This voltage is not high enough to charge wet/calcium/lead acid batteries so from the getgo they are destined to fail prematurely. They are typically under charged to around ~80%SOC at these voltages.

So what happens when DCS Hybrid batteries are connected to smart alternators? Exactly the same thing they get charged to around the same 80%SOC. However because LFP has no memory effect that's perfectly fine. By only charging to 80% you are further improving the service life of our batteries. It's no not necessary to charge our batteries over 80%SOC. The only advantage is that you give the BMS a chance to detect full charge voltage and calibrate the SOC readout. So try to plug into mains once a week to fully charge your batteries, especially if your not running any fixed solar supply.

BMS & CMS

Here at DCS, designing lithium batteries is not only our bread and butter, but we love this safe, stable, robust, and high-performance cell chemistry so much that we decided to develop our own range of Battery and Cell Management Systems in 2015.

DCS Battery Management System:

What was the objective? Well, the reason we embarked on this project was that all the basic Chinese designed BMS’s are just protection boards, and it is hard to call them a BMS when they don’t do any cell balancing or provide any means of programmability for various parameters and cell control. A lot of Battery Management Systems that we have tested were using inferior PCB engineering design techniques and poor components. That means continuous performance above 100A was more or less impossible, and reliability was also questionable when pushing above 100A with those Battery Management Systems.

Our key BMS objective was to develop a high-performance 200A BMS that could do;

  • 200A continuous operations using high-quality components
  • To have a minimal increase in temperature at peak output current (as these circuit boards are installed inside battery packs, limiting internal heat build-up that is crucial for the longevity of the battery cells).
  • Designed for engine cranking applications, it has to deliver a minimum of 1200LCA’s for 10 seconds (because of the limited voltage drop with suitable lithium cells, it’s very easy to crank over modern engines. Most engines will start in under 1sec, so 10 seconds is plenty). CCA’s don’t apply to lithium batteries as this standard was developed for lead-acid batteries and needed to deliver 30 secs of cranking amps. When a lithium battery is controlled via a BMS, the correct terminology is LCA = Lithium Cranking Amps based on delivering 10 secs of cranking amps.
  • Suitable for high temperatures applications, e.g. engine compartments. It will be stable up to 180 degrees C.
  • Bluetooth and WiFi connectivity in order to develop a comprehensive app platform
  • Pass MIL vibration testing standards (to open up the development of batteries for just about any application).

In a nutshell, the design needed to be tough and reliable for those who use them in the field with no room for error. The construction materials, coating and surfaces, assembly techniques are critical in designing a reliable system. After submitting our brief to all major leading manufacturers in Europe, Japan, USA and Korea, we assessed their expertise and ended up working with a leading and well known Japanese semiconductor manufacturer.

This is a typical Chinese 100A 4S BMS design

This is the DCS 4S 200A BMS

After three years of development, in early 2018, we were satisfied with the circuit board stress testing and released the first batch of our newly developed BMS’s right across our entire 4S (12V) & 16S (48V) battery range. At the same time, we hired an app development team to start working on the software integration to launch our first app platform. The first GEN1 BLE DCS BMS’s that featured Bluetooth chips were launched in OCT 2019. The app platform required a lot of tweaking both on the hardware and software front, and our GEN2 BMS’s were released in mid-2020 along with a more stable app platform with a new design scheme. Our latest GEN3 BLE BMS’s had been released in JAN 2021. The accuracy and stability of the DCS LFP App monitoring system is now very mature and refined. Some additional features had been added along with the ability to create custom battery names. We can produce our DCS BMS technology in any continuous rating range from 10A to 200A with our comprehensive BLE DCS LFP App platform.

DCS Cell Management System:

Having developed such an industry-leading and reliable BMS, it made no sense to combine the cell balancing system together with the BMS. So with our many years of experience in designing and maintaining lithium batteries, we have developed a stand-alone CMS to compliment our BMS. CMS? What? OK, so there are two ‘theories’ of cell balancing in the lithium world passive and active. Passive balancing is a cheap inferior method of cell management as it can burn resistors in an attempt to bleed cell strings. In contrast, active cell balancing is a more complex and efficient balancing technique that redistributes charge between battery cells during the charge and discharge cycles.

Passive balancing has two fundamental setbacks;

  1. Heat: We don’t want unnecessary heat build-up inside a battery pack. The less internal heat, the lesser the impact on the battery cells over time
  2. Resistors have a limited service life, and once they fail game over, you have no cell management. But more importantly, they can fail in such a way in which they will keep drawing power and eventually destroy the cells.

Active balancing is the only way to manage lithium cells correctly. There are many ways to design an integrated circuit (IC) to actively manage cell strings. At DCS, we have tested well over 10 different methods of active balancing IC’s over the years and, in the end, again decided to develop our own active management circuit boards with the best-combined techniques based on our stress testing. Our in house PCB design engineer Max, designed our circuit boards to again meet the following criteria:

  • High current movement (our latest boards now achieve 3.7A dynamic movement per channel)
  • Thermal management to ensure the boards remain reliable in harsh environments
  • Be able to withstand maximum current and thermal loads to ensure long term reliability
  • Fail-safe design, if any component fails, it won’t compromise the battery pack (not consume power from the battery cells)

This is the DCS 16 channel CMS

There are, of course, some other software features and parameters, which we can’t disclose on this page to the public, as well as some very fancy hardware. But what our latest 04 channel and 16 channel CMS’s do is they can easily manage up to 1000Ah battery banks. So, for example, if you wanted to use our 16 channel CMS’s you could run a 51.2V 1000Ah single battery pack, which would be 51.2kWh in size! The DCS 15kWh batteries are just shy of 300Ah in capacity, so one can only imagine the tight CMS control these batteries are under, and that’s why we back them with a 10 year / 80% capacity warranty.

The DCS 16 channel 59.2A active cell balancing system is so powerful that it will change the battery storage market forever. With this system, the lithium market will continue to dominate for the foreseeable future. Of course, all DCS batteries now feature both our BMS & CMS circuit boards.

We design all our own PCB hardware and the circuit boards are tested to withstand a minimum of 10 years of severe abuse. This video is the MIL-STD 810G Method 514.6 which includes 4 procedures for different modes of vibration.

How to wire batteries correctly

 

CELL SAFETY INFO - Why LiFePO4 (LFP)?

Lithium Ferrophosphate (LFP) is a flame retardant, stable, safe and proven cell chemistry that has a very good energy density around 325 Wh/L. This cell chemistry can be engineered for various applications by adjusting the ratio of elements to provide high performance characteristics. E.g. the DCS marine battery range runs 2C cells, which means our little 75Ah battery will discharge comfortably at 75Ah x 2C = 150A. The DCS 80Ah Extreme runs 10C cells which means the 80A can comfortably discharge at 80Ah x 10C = 800A but is of course limited to lower currents due the the Battery Management System.

LFP also has very good cycling durability between 2,000 ~ 12,000 cycles can be achieved depending on how well the cells are managed, and the lowest rate of capacity loss (aka greater calendar-life) compared to other lithium cell chemistries.

WHY YOU CANNOT USE A VSR BETWEEN TWO DIFFERENT BATTERIES CAPACITIES & CHEMISTRIES?

Battery cells are simply a bunch of resistors with the ability to store energy. A 100Ah battery pack has a different resistance characteristic compared to a 50Ah battery pack, that theoretical difference in resistance is 2:1. So if you connect a 100Ah battery in parallel to a 50Ah battery there is no way for these two batteries to equalise and therefore you can’t charge them correctly. So for example connecting a 60Ah calcium starting battery to a 120Ah AGM via a VSR (Voltage Sensing Relay) you cannot charge both batteries correctly and from that day onwards you are prematurely destroying both battery packs. Same theory applies with lithium’s it’s still a battery pack.

What’s the solution? A DC-DC charger, you now have a permanent point of isolation (meaning that both batteries are never connected to each other in parallel). The DC-DC charger takes the surplus power from battery A (engine) and chargers battery B (aux/house). This device now allows any battery capacity and or chemistry to be used.

What if both batteries are the same, can I run a VSR between exactly the same two batteries?

Yes you can, but lithium’s have a different voltage curve, so you would still need to use a programmable VSR to dial them in correctly. However these devices draw a lot of power when engaged to so it’s best to run the two batteries in parallel and run a load disconnect instead of a VSR.

The advantages of the lithium battery cell chemistry

Lithium battery cells have a super low resistance so are very easy to charge and very efficient. This level of efficiency means you can charge them at very high C rates. For example if you look at the charge rate of a 100Ah AGM battery the recommended charging current will be around 25A, which is a 0.25C charge rate. If you consider the DCS 12V 100Ah Lithium battery it can be charged at up to 70A which is a 0.70C charge rate. This means you no longer need to consider DC-DC chargers as you can connect our batteries directly to high power charging devices such as suitable alternators, or large buck boosters. For example our popular dual 90Ah battery system for boats and 4WD vehicles, can be connected to alternators up to 160A.

WHY CAN DCS BATTERIES BE CONNECTED IN PARALLEL WITHOUT ANY EXTERNAL COMMUNICATION SYSTEM?

Because our batteries are internally voltage regulated and because our BMS has such a high sustainable peak discharge current they will do an amazing job of equalising very quickly.

WHAT HAPPENS IF I FULLY DISCHARGE MY BATTERY TO EMPTY?

The BMS will open circuit the battery terminals to protect the cells. This means there is no longer any resistance in the system. The BMS needs a 12V signal with at least 1A of current to release and wakeup from a cell protection state. Most mains chargers with a lithium profile will do a slow recovery charge as will most solar regulators. Some chargers in the market today that are advertised as ‘lithium’ compatible still don’t have the firmware to do a slow recovery charge to release BMS’s. If you have a charger that will not wakeup the BMS, easiest way to wake it up is to connect a unregulated solar panel directly to the battery terminals, ensure all loads are disconnected before you do this. Having said that every system should have a suitable low cut off voltage to shutdown loads/accessories so that the batteries are not fully drained.

BATTERY MONITOR SETTINGS

Use the following settings:

Charged voltage 14.0V
Tail current 4%
Charged detection time 1min
Peukert 1.05
Charge efficiency 98%
Current threshold 0.1A
C rates: refer to the battery pack capacity

What is the best state/charge to store these batteries ?

Fully charge to 100% isolate everything from the terminals and leave for max 3 months and then cycle (fully discharge and fully charge) and leave again for 3 months etc…. Minimum 4 cycles per year to not effect the cells capacity.